

Terval/A

Regolatore per gas a pressione medio-bassa

Pietro Fiorentini S.p.A.

Via E.Fermi, 8/10 | 36057 Arcugnano, Italia | +39 0444 968 511 sales@fiorentini.com

I dati non sono vincolanti. Ci riserviamo il diritto di apportare modifiche senza preavviso.

tervala_technicalbrochure_ITA_revB

www.fiorentini.com

Chi siamo

Siamo un'organizzazione mondiale specializzata nella progettazione e produzione di soluzioni tecnologicamente avanzate per il trattamento, il trasporto e la distribuzione di gas naturale.

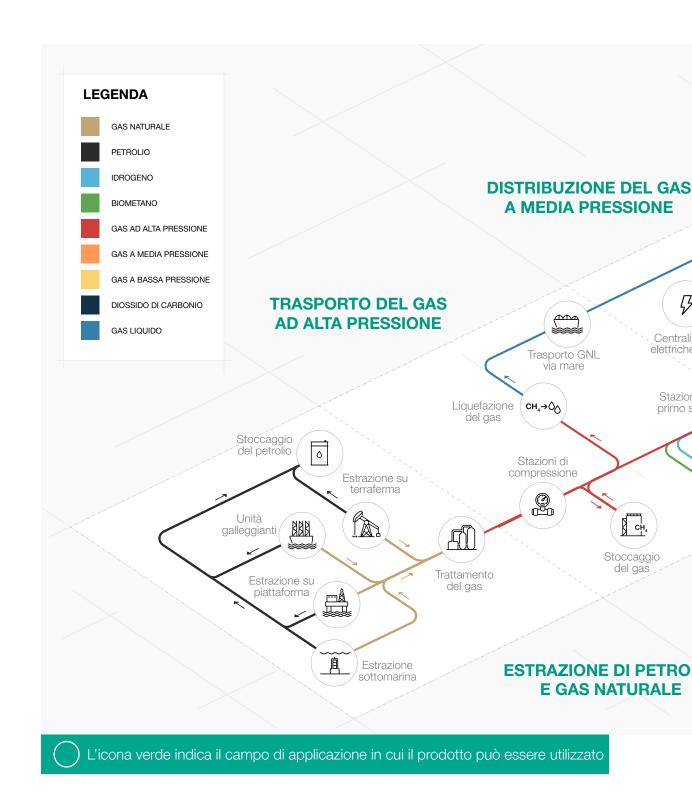
Siamo il partner ideale per gli operatori del settore Oil & Gas, con un'offerta commerciale che copre tutta la filiera del gas naturale.

Siamo in costante evoluzione per soddisfare le più alte aspettative dei nostri clienti in termini di qualità ed affidabilità.

Il nostro obiettivo è quello di essere un passo avanti rispetto alla concorrenza, grazie a tecnologie su misura e ad un programma di assistenza post-vendita svolto con il massimo grado di professionalità.

Pietro Fiorentini i nostri vantaggi

Supporto tecnico localizzato


Attivi dal 1940

Operiamo in oltre 100 paesi del mondo

Campo di applicazione

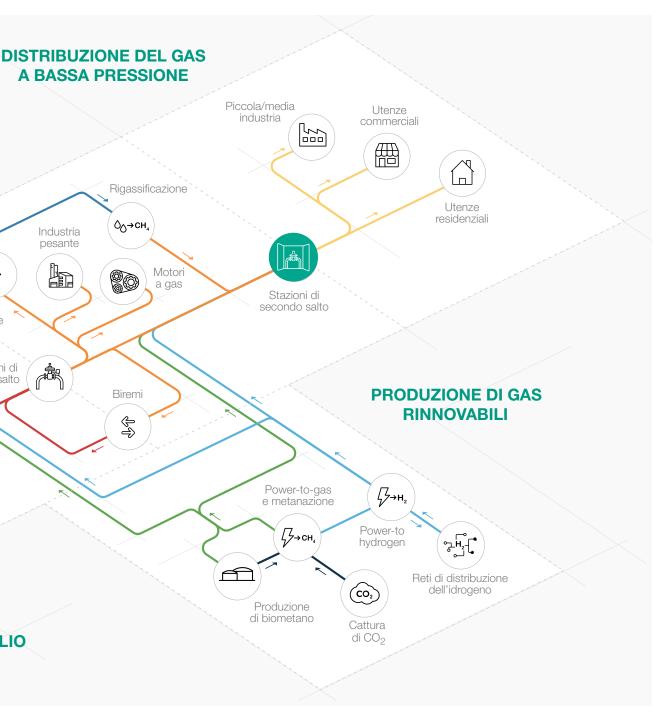


Figura 1 Mappa dei campi di applicazione

Introduzione

Terval/A è uno dei regolatori di pressione per gas ad azione pilotata progettati e realizzati da Pietro Fiorentini.

Questo dispositivo è adatto per l'uso con gas non corrosivi precedentemente filtrati, ed è principalmente utilizzato per reti di distribuzione di gas naturale a media e bassa pressione.

Secondo la norma europea EN 334, è classificato come Fail Open.

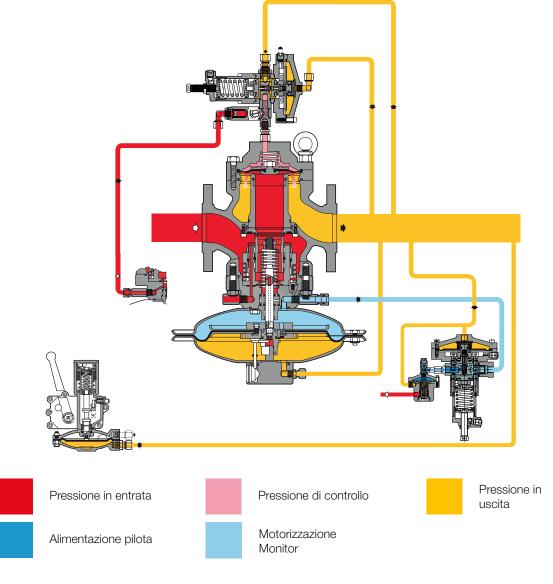


Figura 2 Terval/A

Caratteristiche e range di taratura

Terval/A è un regolatore di pressione ad azione pilotata per alta e media pressione con un sistema unico di bilanciamento dinamico che assicura un eccezionale rapporto di turn down combinato con un controllo estremamente preciso della pressione in uscita.

Un regolatore di pressione bilanciato è un dispositivo in cui la precisione della pressione di mandata non viene compromessa dalle fluttuazioni della pressione in entrata e dal flusso durante il funzionamento.

Pertanto, può avere un unico orifizio per tutte le condizioni di pressione e di flusso.

Questo regolatore è adatto all'uso in reti di distribuzione del gas naturale e nelle applicazioni industriali ad alto carico con gas precedentemente filtrati e non corrosivi.

Il suo design "top entry" consente una facile manutenzione delle parti direttamente in campo, senza dover rimuovere il corpo dalla tubazione.

La regolazione del setpoint del regolatore si ottiene tramite un pilota usato per caricare e scaricare la pressione di sfiato alla camera della membrana.

Il design modulare dei regolatori di pressione Terval/A consente di installare simultaneamente, sullo stesso corpo, sia il monitor d'emergenza PM/182 che la valvola di blocco SA. Inoltre, è possibile installare anche il silenziatore DB/93 sullo stesso corpo.

Figura 3 Terval/A

Figura 4 Terval/A con silenziatore DB

Terval/A Vantaggi competitivi

Bilanciato

Funziona con bassa pressione differenziale

Alta precisione

1 corpo, 3 funzioni

Filtro integrato nel pilota

Top Entry

Manutenzione semplice

Bassa rumorosità

Accessori integrati

Compatibile con biometano con miscele di idrogeno al 10% Miscele superiori disponibili su richiesta

Caratteristiche

Caratteristiche	Valori
Pressione di progetto*	fino a 2.5 MPa fino a 25 barg
Temperatura operativa*	da -20°C a +60°C da -4°F a +140°F
Temperatura ammissibile in entrata*	da -20°C a +60°C da -4°F a +140°F
Campo di pressione in entrata bpu (MAOP)	da 0.05 a 2.5 MPa da 0.5 a 25 barg
Campo di regolazione possibile Wd	da 0.0005 a 0.95 MPa da 0.005 a 9.5 barg
Accessori disponibili	Silenziatore DB
Pressione differenziale minima	0.045 MPa 0.45 barg
Classe di precisione AC	fino a 5
Classe di pressione in chiusura SG	fino a 10
Grandezze disponibili DN	DN 50 / 2" DN 65 / 2" 1/2; DN 80 / 3"; DN 100 / 4"
Connessioni*	Classe 150 RF o RTJ secondo ASME B16.5 e PN 25 e 40 secondo ISO 7005

(*) NOTA: Caratteristiche funzionali diverse e/o intervalli di temperatura estesi disponibili su richiesta. Le gamme di temperatura dichiarate sono il massimo per il quale sono soddisfatte le prestazioni complete dell'attrezzatura, inclusa la precisione. Il prodotto standard può avere un range di valori più ristretto.

Tabella 1 Caratteristiche

Materiali e approvazioni

Parte	Materiale
Corpo	Acciaio fuso ASTM A216 WCB per tutte le dimensioni Ferro dolce GS 400-18 ISO 1083 per tutte le dimensioni
Testata	Acciaio al carbonio fucinato o laminato
Sede	Tecnopolimero
Membrana	Gomma vulcanizzata
Guarnizione	Gomma nitrilica
Raccordi	Secondo DIN 2353 in acciaio al carbonio zincato. Acciaio inossidabile a richiesta

NOTA: i materiali sopra indicati si riferiscono ai modelli standard. Materiali diversi possono essere forniti sulla base di esigenze specifiche.

Tabella 2 Materiali

Standard costruttivi ed approvazioni

Il regolatore **Terval/A** è progettato secondo la norma europea EN 334. In caso di rottura, il regolatore si porta in posizione di apertura (vedere norma EN 334).

Il prodotto è certificato secondo la direttiva europea 2014/68/UE (PED). Classe di perdita: chiusura ermetica, migliore di VIII secondo ANSI/FCI 70-3.

EN 334

PED-CE

Gamma e tipo piloti

<u></u>			Camp	o Wh	Link tabella
Tipo	Modello	Azione	KPa	mbarg	molle
Pilota principale	301/.	Manuale	0.5 - 10	5 - 100	<u>TT 1037</u>

			Camp	o Wh	Link tabella
Tipo	Modello	Azione	МРа	barg	molle
Pilota principale	301/.TR	Manuale	0.01 - 0.2	0.1 - 2	<u>TT 1037</u>
Pilota principale	302/.	Manuale	0.08 - 0.95	0.8 - 9.5	<u>TT 653</u>

Tabella 3 Tabella delle impostazioni

Taratura dei piloti			
Pilota tipo/A	Taratura manuale		
Pilota tipo/D	Controllo elettrico a distanza della taratura		
Pilota tipo/CS	Controllo della taratura con segnale pneumatico		
Pilota tipo/FIO	Pilota per il controllo della pressione, il monitoraggio e la limitazione della portata		

Tabella 4 Tabella di taratura dei piloti

Link alle tabelle di taratura: CLICCARE QUI o usare il QR code:

Il circuito di pilotaggio è dotato di una valvola di laminazione regolabile AR100. La portata del circuito di pilotaggio è controllata dal grado di apertura della valvola di laminazione AR100 che influenza il tempo di risposta del regolatore.

Il calo di pressione attraverso la valvola di laminazione AR100 deve essere di circa 0.02 MPa (0.2 barg) con il grado minimo di apertura di flusso del regolatore, e di circa 0.1 MPa (1 barg) con il massimo grado di apertura.

Accessori

Per i regolatori di pressione:

- Griglia per la limitazione della portata
- Silenziatore

Per il circuito di pilotaggio:

• Filtro supplementare CF14 o CF14/D

Monitor e valvola di blocco integrati

La caratteristica unica dei regolatori di pressione della serie Terval è la presenza, nello stesso corpo, di un dispositivo con monitor d'emergenza e valvola di blocco integrati e di un regolatore attivo.

Questo garantisce la presenza di un dispositivo a triplice funzione in un unico corpo, riducendo l'ingombro in fase di installazione.

Monitor PM/182

Il regolatore di emergenza (monitor) è integrato direttamente nel corpo del regolatore principale. Entrambi i regolatori di pressione utilizzano lo stesso corpo valvola, ma attuatori, piloti e sedi valvola autonomi.

Il monitor è di norma in posizione completamente aperta durante il funzionamento del regolatore principale e si attiva nel caso quest'ultimo si guasti.

Le caratteristiche di funzionamento del PM/182 sono le stesse del regolatore di pressione Reval 182 (fare riferimento allo specifico catalogo).

I coefficienti Cg dei regolatori dotati di monitor integrato sono più bassi del 5% rispetto a quelli delle versioni standard.

Il monitor integrato consente la costruzione di linee di riduzione della pressione di dimensioni compatte.

Un altro grande vantaggio del monitor integrato è quello di **poter essere installato in ogni momento**, anche su un regolatore esistente, **senza cambi rilevanti sulla tubazione**.



Figura 5 Terval/A PM/182

Time	Modello	Ariono	Camp	o Wh	Link tabella
Tipo	Modello	Azione	МРа	barg	molle
Pilota principale	204/A	Manuale	0.03 - 4.3	0.3 - 43	<u>TT 433</u>
Pilota principale	205/A	Manuale	2 - 6	20 - 60	<u>TT 799</u>
Pilota principale	206/A	Manuale	3.2 - 6.5	32 - 65	<u>TT 1050</u>
Pilota principale	207/A	Manuale	4.1 - 7.4	41 - 74	<u>TT 1146</u>

Tabella 5 Tabella delle impostazioni

Tipi di regolazioni dei piloti				
Pilota tipo/A	Taratura manuale			
Pilota tipo/D	Controllo elettrico a distanza della taratura			
Pilota tipo/CS	Controllo della taratura con segnale pneumatico			
Pilota tipo/FIO	Pilota per il controllo della pressione, il monitoraggio e la limitazione della portata			

Tabella 6 Tabella di taratura dei piloti

Il regolatore monitor può essere dotato di un pilota aggiuntivo chiamato "acceleratore" che consente un tempo di risposta rapido durante l'intervento del monitor. Secondo la PED, l'acceleratore è richiesto sul monitor qualora agisca come accessorio di sicurezza.

Time	Modello	Azione	Camp	o Wh	Link tabella
Tipo	Modello	Azione	МРа	barg	molle
Acceleratore	V/25 BP	Manuale	0.0015 - 0.02	0.015 – 0.2	TT 00601
Acceleratore	V/25 MP	Manuale	0.02 – 0.06	0.2 – 0.6	TT 00601
Acceleratore	M/A	Manuale	0.03 - 2	0.3 - 20	<u>TT 354</u>
Acceleratore	M/A1	Manuale	2 - 6.3	20 - 63	TT 892
Acceleratore	M/A2	Manuale	4 - 7.5	40 - 75	TT 892

Tabella 7 Tabella delle regolazioni degli acceleratori

Link alle tabelle di taratura: CLICCARE QUI o usare il QR code:

Silenziatore DB

Quando si desidera un certo limite di rumore, un silenziatore supplementare permette di ridurre considerevolmente il livello di rumore (dBA).

Il regolatore di pressione Terval/A può essere equipaggiato con un **silenziatore incorporato**, sia nella versione standard, sia nella versione con blocco o monitor integrato.

L'alta efficienza deriva dal fatto che il rumore viene assorbito nello stesso punto in cui viene generato, impedendone così la propagazione.

Con il silenziatore integrato, il coefficiente della valvola Cg è inferiore del 5% rispetto alla versione non silenziata.

Grazie al profilo modulare del regolatore, il silenziatore può essere adattato sia alla versione standard del regolatore Aperval, sia a quelle con valvola di blocco o monitor incorporati senza bisogno di modificare la tubazione principale.

La riduzione della pressione e il controllo funzionano nello stesso modo della versione standard.

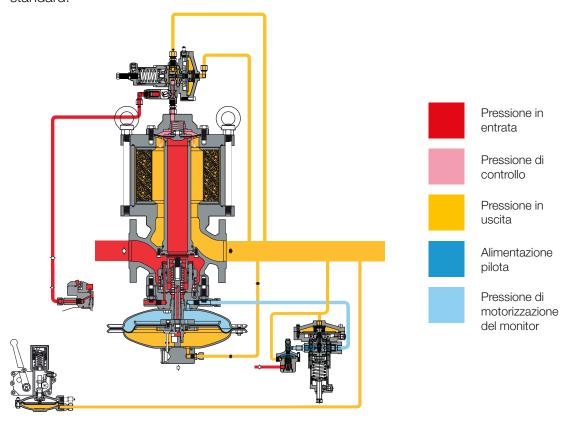


Figura 6 Terval/A con silenziatore DB

I grafici riportati di seguito rappresentano l'efficacia del silenziatore in condizioni di riferimento comuni per regolatori da 2", 3" e 4". Per i calcoli relativi a specifiche condizioni desiderate fare riferimento allo strumento di dimensionamento online o contattare il rappresentante Pietro Fiorentini più vicino.

Grafico 1 Grafici di efficienza del silenziatore Terval/A

Valvola di blocco SA

Il regolatore di pressione Terval/A offre la possibilità di installare una **valvola di blocco incorporata** SA. Questo accessorio può essere aggiunto sia durante il processo di fabbricazione, sia successivamente in campo.

La valvola SA è disponibile per tutte le dimensioni.

Il retrofit può essere implementato senza modificare il gruppo del regolatore di pressione. Con la valvola di blocco integrata, il coefficiente Cg è più basso del 5% rispetto a quello della versione standard.

Le caratteristiche principali di questo dispositivo sono:

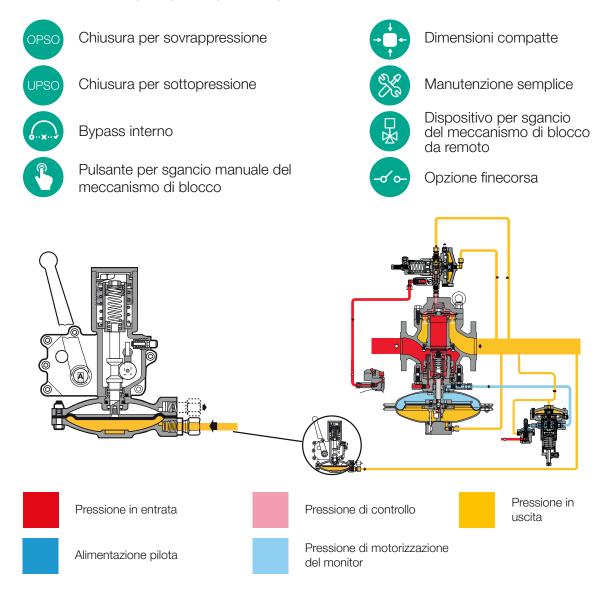


Figura 7 Terval/A SA

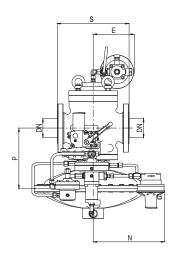

Pressostati - tipi e gamme					
Tipo SSV	Modello	Azione	Camp	Campo Wh	
Tipo 33V	ipo 33V Modello	Azione	КРа	mbarg	molle
SA	01	OPSO	2.5 - 110	25 - 1100	TT 1381
SA	SA 91	UPSO	1 - 90	10 - 900	11 1301
Time CCV	Madella	Azione	Camp	o Wh	Link tabella
Tipo 33v	Tipo SSV Modello				
			MPa	barg	molle
CA	00	OPSO	MPa 0.07 - 0.5	barg 0.7 - 5	
SA	92	OPSO UPSO			molle <u>∏ 1381</u>
SA SA	92		0.07 - 0.5	0.7 - 5	

Tabella 8 Tabella delle impostazioni

Pesi e dimensioni

Terval/A

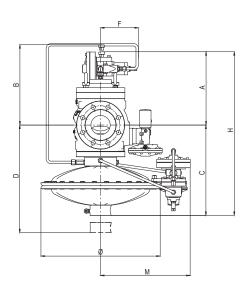
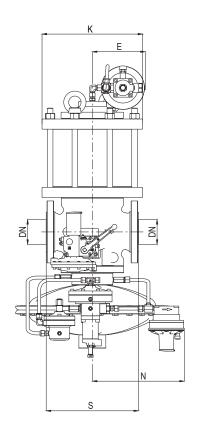


Figura 8 Dimensioni Terval/A


Pesi e dimensioni (pe	e dimensioni (per collegamenti diversi contattare il rivenditore Pietro Fiorentini più vicino)				
	[mm] pollici	[mm] pollici	[mm] pollici	[mm] pollici	
Diametro (DN)	50 2"	65 2" 1/2	80 3"	100 4"	
S - ANSI 150/PN16	254 10"	276 10.87"	298 11.73"	352 13.86"	
Ø	375 14.76"	495 19.49"	495 19.49"	495 19.49"	
Α	313 12.32"	341 13.42"	346 13.62"	429 16.89"	
В	323 12.72"	351 13.82"	356 14.01"	439 17.28"	
С	308 12.13"	373 14.68"	380 14.96"	410 16.14"	
D	430 16.93"	530 20.87"	530 20.87"	600 23.62"	
E	178 7.01"	178 7.01"	178 7.01"	178 7.01"	
F	160 6.30"	160 6.30"	160 6.30"	160 6.30"	
Н	613 24.13"	715 28.15"	725 28.54"	843 33.19"	
М	320 12.60"	385 15.16"	385 15.16"	385 15.16"	
N	290 11.42"	298 11.73"	303 11.93"	306 12.05"	
P	205 8.07"	250 9.84"	260 10.24"	290 11.42"	
Connessioni		Øe 10 x Øi 8 (dimensionam	nento imperiale su richiesta)		

Peso	Kg lbs	Kg lbs	Kg Ibs	Kg lbs
ANSI 150/PN 16	60 132	94 207	110 242	140 309"

Tabella 9 Pesi e dimensioni

Terval/A + DB/93

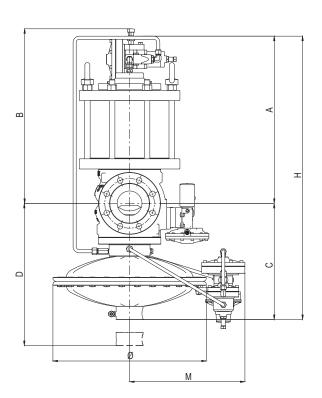


Figura 9 Dimensioni Terval/A + DB/93

Pesi e dimensioni (pe	er collegamenti diversi co	ontattare il rivenditore Pie	etro Fiorentini più vicino)	
	[mm] pollici	[mm] pollici	[mm] pollici	[mm] pollici
Diametro (DN)	50 2"	65 2" 1/2	80 3"	100 4"
S - ANSI 150/PN16	254 10"	276	298 11.73"	352 13.86"
Ø	375 14.76"	495 19.49"	495 19.49"	495 19.49"
Α	487 19.17"	555 21.85"	576 22.68"	678 26.69"
В	497 19.57"	565 22.24"	586 23.07"	688 27.09"
С	308 12.13"	373 14.68"	380 14.96"	410 16.14"
D	430 16.93"	530 20.87"	530 20.87"	600 23.62"
Е	178 7.01"	178 7.01"	178 7.01"	178 7.01"
Н	795 31.30"	913 35.95"	980 38.58"	1088 42.83"
M	320 12.60"	385 15.16"	385 15.16"	385 15.16"
N	290 11.42"	298 11.73"	303 11.93"	306 12.05"
K	295 11.61"	325 12.80"	330 12.99"	390 15.35"
Connessioni		Øe 10 x Øi 8 (dimensionan	nento imperiale su richiesta)	

Peso	Kg Ibs	Kg Ibs	Kg lbs	Kg Ibs
ANSI 150/PN 16	94 207	124 273	152 335	210 463

Tabella 10 Pesi e dimensioni

Dimensionamento e Cg

Un regolatore viene solitamente selezionato in base al calcolo della portata, determinata dall'uso di formule che utilizzano i coefficienti di portata (Cg) e il coefficiente di forma (K1) come indicato dalla norma EN 334.

Coefficiente di portata						
Diametro	50	65	80	100		
Pollici	2"	2" 1/2	3"	4"		
Cg	1706	2731	3906	5490		
K1	108	104	100	100		

Tabella 11 Coefficiente di portata

Per il dimensionamento **CLICCARE QUI** o usare il QR code:

Nota: Qualora non si fosse in possesso delle chiavi di accesso, contattare il rivenditore Pietro Fiorentini più vicino.

Dal momento che il regolatore viene installato all'interno di un sistema, il dimensionamento online tiene conto di un maggior numero di variabili, garantendo una proposta completa ed esaustiva.

Per gas diversi, e per gas naturale con densità relativa diversa da 0,61 (rispetto all'aria), si applicano i coefficienti di correzione della seguente formula.

$$F_c = \sqrt{\frac{175,8}{S \times (273.16 + T)}}$$
 $S = \text{densità relativa (rif. tabella 12)}$ $T = \text{temperatura del gas (°C)}$

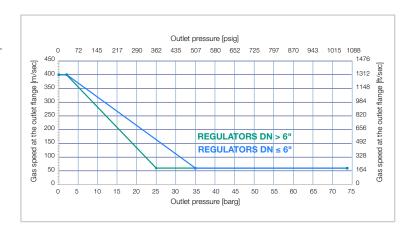
Coefficiente di correzione Fc					
Tipo di gas	Densità relativa S	Coefficiente di correzione Fc			
Aria	1.00	0.78			
Propano	1.53	0.63			
Butano	2.00	0.55			
Azoto	0.97	0.79			
Ossigeno	1.14	0.73			
Anidride carbonica	1.52	0.63			
Nota: la tabella mostra i coefficienti di correzione Fc validi per Gas, calcolati ad una temperatura di 15°C e alla densità relativa dichiarata.					

Tabella 12 Coefficiente di correzione Fc

Conversione della portata

 $Stm^3/h \times 0.94795 = Nm^3/h$

Nm³/h Condizioni di riferimento T=0 °C; P=1 barg Stm³/h Condizioni di riferimento T=15 °C; P=1 barg


Tabella 13 Conversione della portata

ATTENZIONE:

Per ottenere prestazioni ottimali, evitare fenomeni di erosione prematura e limitare le emissioni di rumore, verificare che la velocità del gas alla flangia di uscita non superi i valori del grafico sottostante. La velocità del gas alla flangia di uscita può essere calcolata con la seguente formula:

$$V = 345.92 \times \frac{Q}{DN^2} \times \frac{1 - 0.002 \times Pd}{1 + Pd}$$

V = velocità del gas in m/s Q = portata del gas in Stm³/h DN = diametro nominale in mm Pd = pressione in uscita in barg

Il dimensionamento dei regolatori è di norma calcolato in base al valore Cg della valvola (tabella 11).

Le portate in posizione completamente aperta e le varie condizioni di funzionamento sono correlate dalle seguenti formule dove:

Q = portata in Stm³/h

Pu = pressione in ingresso in bar (abs)

Pd = pressione in uscita in bar (abs).

- A > quando il valore Cg del regolatore è noto, così come Pu e Pd, la portata può essere calcolata come segue:
- A-1 in condizioni non critiche: (Pu < 2 x Pd)

Q = 0.526 x Gg x Pu x sin
$$\left(K1 \text{ x } \sqrt{\frac{Pu - Pd}{Pu}}\right)$$

• A-2 in condizioni critiche: (Pu ≥ 2 x Pd)

$$Q = 0.526 \times Cg \times Pu$$

- B > viceversa, quando i valori di Pu, Pd e Q sono noti, il valore di Cg, e quindi la dimensione del regolatore, può essere calcolato usando:
- **B-1** in condizioni non critiche: (Pu<2xPd)

$$Cg = \frac{Q}{0.526 \times Pu \times sin\left(K1 \times \sqrt{\frac{Pu - Pd}{Pu}}\right)}$$

• **B-2** in condizioni critiche (Pu ≥ 2 x Pd)

$$Cg = \frac{Q}{0.526 \times Pu}$$

NOTA: Il valore sin è inteso come DEG.

TB0017ITA

I dati non sono vincolanti. Ci riserviamo il diritto di apportare modifiche senza preavviso.

tervala_technicalbrochure_ITA_revB

www.fiorentini.com